(Tel: 400-999-8863 ■ Emall:Upingbio.163.com ## COX3 Polyclonal Antibody | Catalog No | YP-Ab-05053 | |--------------------|---| | Isotype | IgG | | Reactivity | Human;Rat;Mouse; | | Applications | WB;ELISA | | Gene Name | MT-CO3 COIII COXIII MTCO3 | | Protein Name | Cytochrome c oxidase subunit 3 (Cytochrome c oxidase polypeptide III) | | Immunogen | Synthesized peptide derived from human protein . at AA range: 1-80 | | Specificity | COX3 Polyclonal Antibody detects endogenous levels of protein. | | Formulation | Liquid in PBS containing 50% glycerol, and 0.02% sodium azide. | | Source | Polyclonal, Rabbit,IgG | | Purification | The antibody was affinity-purified from rabbit antiserum by affinity-chromatography using epitope-specific immunogen. | | Dilution | WB 1:500-2000 ELISA 1:5000-20000 | | Concentration | 1 mg/ml | | Purity | ≥90% | | Storage Stability | -20°C/1 year | | Synonyms | | | Observed Band | 28kD | | Cell Pathway | Mitochondrion inner membrane ; Multi-pass membrane protein . | | Tissue Specificity | Blood,Bone fossil,Bones,Breast cancer,Distant normal tissue,Endometrial | | | adenocarcin | | Function | | ## UpingBio technology Co.,Ltd 📞 Tel: 400-999-8863 🗷 Emall:Upingbio.163.com Website: www.upingBio.com optic neuropathy (LHON) [MIM:535000]. LHON is a maternally inherited disease resulting in acute or subacute loss of central vision, due to optic nerve dysfunction. Cardiac conduction defects and neurological defects have also been described in some patients. LHON results from primary mitochondrial DNA mutations affecting the respiratory chain complexes., disease: Defects in MT-ATP6 are a cause of Leigh syndrome (LS) [MIM:256000]. LS is a severe neurological disorder characterized by bilaterally symmetrical necrotic lesions in subcortical brain regions., disease: Defects in MT-ATP6 are the cause of neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP) [MIM:551500]., disease:Defects in MT-CO3 are a cause of cytochrome c oxidase deficiency (COX deficiency) [MIM:220110]; also called mitochondrial complex IV deficiency. COX deficiency is a clinically heterogeneous disorder. The clinical features are ranging from isolated myopathy to severe multisystem disease, with onset from infancy to adulthood., disease: Defects in MT-CO3 are a cause of Leber hereditary optic neuropathy (LHON) [MIM:535000]. LHON is a maternally inherited disease resulting in acute or subacute loss of central vision, due to optic nerve dysfunction. Cardiac conduction defects and neurological defects have also been described in some patients. LHON results from primary mitochondrial DNA mutations affecting the respiratory chain complexes., disease: Defects in MT-CO3 are associated with recurrent myoglobinuria [MIM:550500]. Myoglobinuria consists of excretion of myoglobin in the urine disease: Defects in MT-CO3 are found in mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome, a genetically heterogeneous disorder, characterized by episodic vomiting, seizures, and recurrent cerebral insults resembling strokes and causing hemiparesis, hemianopsia, or cortical blindness.,function:Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Key component of the proton channel; it may play a direct role in the translocation of protons across the membrane.,function:Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(0) domain. Minor subunit located with subunit a in the membrane ,function:Subunits I, II and III form the functional core of the enzyme complex., similarity:Belongs to the ATPase A chain family., similarity:Belongs to the ATPase protein 8 family., similarity:Belongs to the cytochrome c oxidase subunit 3 family., subunit:F-type ATPases have 2 components, CF(1) - the catalytic core - and CF(0) - the membrane proton channel., subunit: F-type ATPases have 2 components, CF(1) - the catalytic core - and CF(0) - the membrane proton channel. CF(1) has five subunits: alpha(3), beta(3), gamma(1), delta(1), epsilon(1). CF(0) has three main subunits: a, b and matters needing attention Avoid repeated freezing and thawing! Usage suggestions This product can be used in immunological reaction related experiments. For more information, please consult technical personnel. ## **Products Images** Western blot analysis of lysates from U2OS cells, primary antibody was diluted at 1:1000, 4° over night